Using SNOMED-CT to encode summary level data – a corpus analysis

نویسندگان

  • Hongfang Liu
  • Kavishwar Wagholikar
  • Stephen Tze-Inn Wu
چکیده

Extracting and encoding clinical information captured in free text with standard medical terminologies is vital to enable secondary use of electronic medical records (EMRs) for clinical decision support, improved patient safety, and clinical/translational research. A critical portion of free text is comprised of 'summary level' information in the form of problem lists, diagnoses and reasons of visit. We conducted a systematic analysis of SNOMED-CT in representing the summary level information utilizing a large collection of summary level data in the form of itemized entries. Results indicate that about 80% of the entries can be encoded with SNOMED-CT normalized phrases. When tolerating one unmapped token, 96% of the itemized entries can be encoded with SNOMED-CT concepts. The study provides a solid foundation for developing an automated system to encode summary level data using SNOMED-CT.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Semantic Tagging of Medical Narratives with Top Level Concepts from SNOMED CT Healthcare Data Standard

Medical narratives written by clinicians constitute critical information in healthcare domain and are required to be correct with respect to contextual meaning. SNOMED CT (Systematized Nomenclature of Medicine -Clinical Terms) is a standardized reference terminology that consists of 390023 SNOMED CT concepts with SNOMED CT codes. This paper describes the extraction of SNOMED CT concepts from fr...

متن کامل

بررسی تطبیقی سیر تکامل و ساختار سیستم های نامگذاری نظام یافته پزشکی SNOMED در کشورهای آمریکا ، انگلستان و استرالیا 86-85

Background and Aim: Systematized Nomenclature of Medicine systems are the important supportive for electronic health record in registration and retrieval of data. Systematized Nomenclature of Medicine - Clinical Terms (SNOMED CT) is the most comprehensive language and then the consistency of exchanged data across health care providers and finally the high effectiveness of health care. Material...

متن کامل

A method for encoding clinical datasets with SNOMED CT

BACKGROUND Over the past decade there has been a growing body of literature on how the Systematised Nomenclature of Medicine Clinical Terms (SNOMED CT) can be implemented and used in different clinical settings. Yet, for those charged with incorporating SNOMED CT into their organisation's clinical applications and vocabulary systems, there are few detailed encoding instructions and examples ava...

متن کامل

Subsumptive reflection in SNOMED CT: a large description logic-based terminology for diagnosis

Description logic (DL) based biomedical terminology (SNOMED CT) is used routinely in medical practice. However, diagnostic inference using such terminology is precluded by its complexity. Here we propose a model that simplifies these inferential components. We propose three concepts that classify clinical features and examined their effect on inference using SNOMED CT. We used PAIRS (Physician ...

متن کامل

Learning Formal Definitions for Snomed CT from Text

Snomed CT is a widely used medical ontology which is formally expressed in a fragment of the Description Logic EL++. The underlying logics allow for expressive querying, yet make it costly to maintain and extend the ontology. Existing approaches for ontology generation mostly focus on learning superclass or subclass relations and therefore fail to be used to generate Snomed CT definitions. In t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2012  شماره 

صفحات  -

تاریخ انتشار 2012